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Introduction

OMPOSITE materials have been widely used in aeronautical

industries to replace metals in the aircraft structures for the
purpose of weight saving. Currently, in high-performance aircraft,
composite materials are mostly used to make the skins of wings and
fuselage of an aircraft. During high-speed flight, the external skin
panel of an airframe may exhibit flutter. This type of aeroelastic
instability has received much attention in the past 40 years."> Be-
cause the finite-element method (FEM) was first applied to panel
flutter by Olson® in 1967, it has gained widespread attention by
aeroelasticians,and many panel flutter analyses were done by using
the FEM.** Although the FEM is the most powerful and versatile
tool of solution in panel flutter analysis, it may be unnecessary for
structures that have regular geometric plans and simple boundary
conditions. Hence an alternative method that can reduce the com-
putational effort, but at the same time, retain to some extent, the
versatility of the finite-element analysis, is desirable. In this Note,
the finite-strip method (FSM) developed by Cheung® in 1968 is
applied to the flutter analysis of composite panels.

Equation Formulation

Consider a symmetric composite laminated thin plate with length
a, width b, thickness &, and mass density per unit volume p, as
shown in Fig. 1. The plate is assumed to consist of N layers of ho-
mogeneous anisotropic sheets bonded together. Supersonic airflow
with air density p,, flow velocity U,, Mach number M, , and aero-
dynamic pressure Ap is assumed passing over the top surface of the
plate with an angle A measured counterclockwise from the x axis.

The governing differential equation of motion for the plate can
be obtained as
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where w is the normal displacement of the plate. The flexural and
torsionalrigidities D;; of the plate take the form of

N
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Fig. 1 a) Panel geometry and mesh divisions, and b) ply-stacking
sequence.

where (Q,-_,»)k is the transformed reduced stiffness of the kth layer
and z; is defined in Fig. 1. The aerodynamic pressure A p is approx-
imated by quasi-steady aerodynamic theory as
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When the FSM is used for the analysis, the plate is divided into
several strips, as shown in Fig. 1. The displacementfunctionw (x, y)
for a strip is assumed as

W Y) =Y fu(0)Y, () @)
m=1

where f,,(x) is a polynomial function in the x directionand Y,, is a
series that satisfies the end conditions in the y direction. For a strip
with two nodal lines and 2 degrees of freedom at each nodal line,
the polynomial function is identical to that for a beam element in
the FEM. The series term Y, (y) for a plate with simply supported

ends is taken as
Y, (y) =sin(mry/a), m=1,2,3,...,r 5)
Equation (4) can also be expressedin terms of the strip nodal line

displacement {g, } as

r 4 r
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where B; is the shape function associated with ¢; and {g,}] =
{wi 6 wy B}

On substitution of Eq. (6) into Egs. (1) and (3), the bending stiff-
ness [k, ], mass [m;], aerodynamic damping [ A ], and aerodynamic
force [ A¢;] matrices of the strip can be obtained as

(k] =/ [GI"[DNIG]dx dy M
[m,] =// ph[ST"[S]dx dy ®)

[Asl =/ [S1'[S1dx dy C))
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[Asf]=/ [S]T[Z—j} cosAdxdy+/ [S]T[Z—j} sin A dx dy

(10)

where the matrix

[G]" = [

%S 83§ RN
ox2  0y? 0x0y

is the strain-displacementrelation matrix. Each strip has 4 degrees
of freedom; hence the size of the above matrices will be 4m X 4m.

By assembling the strips for the entire plate system and applying
the kinematic boundary conditions, we find that the equation of
motion becomes

(MG} + glAs{g} + ALAfl{g)} + [K]{g} = {0} (1D

where 1 is the aerodynamic pressure parameter and § is the aero-
dynamic damping parameter.

Assuming that the plate motion is an exponentialfunctionof time,
i.e., {g} ={qle", where v is the complex frequency of oscillation
and introducing some nondimensional variables, we then find that
the equation of motion becomes

([K1+ A[A;] = k[M]){q} = {0} (12)
The nondimensional parametes A and k are defined as

A =2a’ /DY, k = —g(viw) — (V)

g = g/ phay, o} =Di?)/pha4
where Dﬁ) is the value of D;; when all fibers are aligned with the
X axis.

Equation (12) represents an eigenvalue problem. For zero flow
velocity, A =0, the eigenvalues k are real. As the flow velocity in-
creases from zero, two eigenvalues will usually approach each other
and coalesce to k at a value of A = A, which is a critical value of
dynamic pressure, and become complex-conjugatepairs for A > A,.

Results and Discussion

First, a comparison of efficiency for the FSM and the FEM’ is
given in Table 1 for flutter analysis of a square isotropic panel with
various cross-flow angles. All the analyses were performed on a
personal computer with Pentium I1 233 CPU, 96-MB RAM, WIN95
operating system, and MS FORTRAN PowerStation 4.0 compiler.
With the same accuracy, the CPU time required for the FSM was
less than % of that for the FEM. Then, for the composite laminates,
the panel considered for the analysis was a symmetric angle-ply
laminate with simply supported edges. The material constants were
El 2265E2, G12 =G13 =G23 = 1184E2, and Via =0.21. Three
different meshes (4 X 4,4 X 8, and 8 X 4) were used in the FSM
to study the effects of the strip number (n) and series term (m)
on accuracy of the solutions for the composite laminates. Results
obtained for the plates were compared with results obtained with the
FEM.” Figure 2 shows the effect of fiber orientation on the flutter

Table 1 Flutter boundaries for a square
isotropic plate by the FSM

Mesh A =0deg A =45 deg A =90 deg

n Xm CPU,s Ay CPU,s Ay CPU,s A

4 X4 044 508.6 0.88 5244 0.88 505.1
4 X6 1.10 508.6 2.64 5259 2.64 5119
4 X8 2.19 508.6 6.32  526.1 593 5125
6 X4 1.15 5119 2.37 5245 2.19 505.1
6 X6 324 5119 9.11 526.1 8.13 5119
6 X8 643 511.9 1691 5262 19.06 512.5
8 X4 324 5124 6.09 5245 5.61 505.1
8 X6 824 5124 18.07 526.1 18.67 511.9
8 X8 18.51 5124 43.89 5262 4372 5125

FEM (4 x4) 1093 5122 1247 5258 1093 5122
FEM (5 X5) 43.06 512.5 4345 5262 43.06 5125
Exact — 5126 — —— —— 5126
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Fig. 2 Flutter boundaries for graphite-epoxy plate with a/b = 1.0.
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Fig. 3 Flutter boundaries for graphite-epoxy plate with a/b = 2.0.

boundaries for a square panel with three different cross-flow angles
(A =0,45,90deg) and two differentlayernumbers (N =2, 10). For
a plate with only two layers, the bending-twisting stiffness terms
not only have a destabilizing (or stabilizing) effect on the flutter
boundary but also affect the accuracy of the FSM results. When
compared with the FEM results, the 4 X 4 mesh give satisfactory
results for almost all cases except for the laminates with N =2,
A =90 deg, and a fiber angle between 50 and 70 deg. If the strip
numberis increasedfrom4 to 8 (i.e., the 8 X4 mesh), the accuracy of
the resultsis notimproved. However, the accuracy can be improved
by increasing the series term. The 4 X 8 mesh gives good results for
all cases shown in Fig. 2. Figure 3 shows the flutter boundaries as
a function of fiber orientation for a rectangular angle-ply laminated
plate with a length/width ratio of 2.0. For both A =0 and 45 deg
flow angles, it is seen that the FSMs with 4 X 4 and 8 X 4 meshes
give unsatisfactory results for a plate with N =2 and a fiber angle
between 30 and 70 deg. The 4 X8 mesh gives only acceptableresults.
Increasing the series terms will improve the results.
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Conclusions

The application of the finite strip method to supersonic flutter of
composite laminated panels has been presented. The present for-
mulations are for symmetric laminates but it is easy to extend the
formulations to general laminated plates. Based on the present re-
sults, the following conclusions can be made:

1) For isotropic panels, the number of strips and series terms
that required giving satisfactory results by the finite strip method is
dependent on the flow angularity.

2) When fiber orientationis not aligned with the x- or y-direction,
increasing series terms will rapidly improve the accuracy of the
results.

3) Flutter boundary (4,) is independent of the series terms when
the airflow is along the x-direction (A =0°) and is independent of
the strip numbers when the airflow is along y-direction (A =90°).
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Gauss-Newton Algorithm
for Aircraft Parameter Estimation
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Introduction

STIMATION of stability and control derivatives or of nonlin-

ear unsteadyaerodynamiceffects from flightdatais a subjectof
continuousinterest. The time-domain approachbased on the output
error method is widely used for this purpose.! =3 It leads to a nonlin-
ear optimization problem, which is solved mostly using the uncon-
strained Gauss-Newton method. Parameter estimation subject to
simple bounds can, however, be relevantin some cases. Two typical
applicationsare the following: 1) parameters that describe the phys-
ical effects, in the present case aerodynamic effects, are often con-
strained to lie in a certain range, for example, the Oswald’s factor*
characterizing the increase in drag over ideal condition caused by
nonelliptical lift distribution and interferenceis typically limited to
less than one or the time delay is always positive and hence greater
than zero; and 2) estimation of highly nonlinear model parameters
such as friction, which may lead to numerical difficulties caused
by differentreasons like poor guess of initial values.’ Incorporation
of such lower and upper bounds in aircraft parameter estimation
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using the Gauss-Newton method has not been hitherto reported in
the literature. This Note, therefore, addresses the issues pertain-
ing to extending the Gauss-Newton method to account for simple
bounds and also demonstrates that the active-set strategy provides
an efficient solution retaining the desirable properties of the Gauss-
Newton method, namely, quadratic convergence and availability of
statistical information regarding the accuracy of the estimates.

Problem Formulation
In the general case a dynamic system is represented as

x() = flx(0), u(®), A] x(fh) =X 1
y(t) = glx(n), u(t), A1 )
Z(tk) = y(tk) + V(tk) k = 1, 2, 3, ey N (3)

where x is the n-dimensional state vector, y the m-dimensional ob-
servation vector, and u the p-dimensional control input vector. The
system functions f and g are general nonlinear real valued vector
functions. The measurement vector z is sampled at N discrete time
points #, and the noise vectorv is assumed to be a sequence of inde-
pendent Gaussian random variables with zero mean and covariance
matrix R. It is required to estimate the unknown system parameters
A and the initial conditions x, as well as the measurement noise
covariance matrix R.

Unconstrained Gauss-Newton Method
The maximum likelihood estimates of the unknown parameters
and of the unknown noise covariance matrix are obtained by mini-
mizing the cost function®®:

1+ N
J©.R) =23 [e() = )T R'[e(w) = )] + = talR|

k=1
4)

where ® =[A7, x] 1" denotes the g-dimensional vector of unknown
parameters, whichmay be extendedto includebias errorsin the mea-
surements of response and control input variables® Optimization of
Eq. (4) is carried out in two steps. In the first step it can be shown
that for any given value of ® the maximum likelihood estimate of
R is given by

Ll
R= 3 M0 - v llzw) - )l (5)

k=1

Having obtained an estimate of R, any optimization method can
be applied to update the parameter vector ®. The investigations
in the past have, however, demonstrated that the derivative-free
search methods such as Powell and downhill Simplex methods’
or Extrem® and routinely available gradient-based methods such as
quasi-Newton, conjugate-gradient, or Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithms’ are much slower compared to the
Gauss-Newton method, particularly for estimation involving large
dynamic systems where the computationaleffortto compute the sys-
tem responses and their gradients is high.>!° For aircraft parameter
estimation purposes the Gauss-Newton method is therefore widely
used.!~* The unconstrained Gauss-Newton method yields the iter-
ative parameter update:

O+ =0, + A® with A® =-F'G 6)

where the g X¢g dimensional information matrix F and the
q-dimensional gradient vector G are given by

_ 3 o] v
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