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Introduction

C OMPOSITE materials have been widely used in aeronautical
industries to replace metals in the aircraft structures for the

purpose of weight saving. Currently, in high-performanceaircraft,
compositematerials are mostly used to make the skins of wings and
fuselage of an aircraft. During high-speed � ight, the external skin
panel of an airframe may exhibit � utter. This type of aeroelastic
instability has received much attention in the past 40 years.1,2 Be-
cause the � nite-element method (FEM) was � rst applied to panel
� utter by Olson3 in 1967, it has gained widespread attention by
aeroelasticians,and many panel � utter analyses were done by using
the FEM.4,5 Although the FEM is the most powerful and versatile
tool of solution in panel � utter analysis, it may be unnecessary for
structures that have regular geometric plans and simple boundary
conditions. Hence an alternative method that can reduce the com-
putational effort, but at the same time, retain to some extent, the
versatility of the � nite-element analysis, is desirable. In this Note,
the � nite-strip method (FSM) developed by Cheung6 in 1968 is
applied to the � utter analysis of composite panels.

Equation Formulation
Consider a symmetric composite laminated thin platewith length

a, width b, thickness h, and mass density per unit volume q , as
shown in Fig. 1. The plate is assumed to consist of N layers of ho-
mogeneous anisotropic sheets bonded together. Supersonic air� ow
with air density q a , � ow velocity Ua , Mach number M 1 , and aero-
dynamic pressure D p is assumed passing over the top surface of the
plate with an angle K measured counterclockwisefrom the x axis.

The governing differential equation of motion for the plate can
be obtained as
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where w is the normal displacement of the plate. The � exural and
torsional rigidities Di j of the plate take the form of

Di j =
1
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Fig. 1 a) Panel geometry and mesh divisions, and b) ply-stacking
sequence.

where (Q̄ i j )k is the transformed reduced stiffness of the kth layer
and zk is de� ned in Fig. 1. The aerodynamicpressure D p is approx-
imated by quasi-steadyaerodynamic theory as
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When the FSM is used for the analysis, the plate is divided into
several strips, as shown in Fig. 1. The displacementfunctionw (x , y)
for a strip is assumed as

w (x , y) =
r

m = 1

fm(x)Ym (y) (4)

where fm (x) is a polynomial function in the x direction and Ym is a
series that satis� es the end conditions in the y direction. For a strip
with two nodal lines and 2 degrees of freedom at each nodal line,
the polynomial function is identical to that for a beam element in
the FEM. The series term Ym (y) for a plate with simply supported
ends is taken as

Ym(y) = sin(m p y / a), m = 1, 2, 3, . . . , r (5)

Equation (4) can also be expressed in terms of the strip nodal line
displacement{qs} as

w(x , y) =
r

m = 1

Ym

4

i = 1

[Bi ]m{qi }m =
r

m = 1

[S]m{qs}m = [S]{qs} (6)

where Bi is the shape function associated with qi and {qs}T =
{w1 h 1 w2 h 2}.

On substitution of Eq. (6) into Eqs. (1) and (3), the bending stiff-
ness [ks], mass [ms], aerodynamicdamping [Asd], and aerodynamic
force [Asf] matrices of the strip can be obtained as

[ks] = [G]T [D][G]dx dy (7)

[ms] = q h[S]T [S] dx dy (8)

[Asd] = [S]T [S] dx dy (9)
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where the matrix
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is the strain-displacementrelation matrix. Each strip has 4 degrees
of freedom; hence the size of the above matrices will be 4m £ 4m.

By assembling the strips for the entire plate system and applying
the kinematic boundary conditions, we � nd that the equation of
motion becomes

[M ]{q̈} + ḡ[Ad ]{ Çq} + ¯k [A f ]{q} + [K ]{q} = {0} (11)

where ¯k is the aerodynamic pressure parameter and ḡ is the aero-
dynamic damping parameter.

Assuming that theplatemotion is an exponentialfunctionof time,
i.e., {q}={q}e m t , where m is the complex frequency of oscillation
and introducing some nondimensional variables, we then � nd that
the equation of motion becomes

([K ] + k [A f ] ¡ k[M]){q} = {0} (12)

The nondimensionalparametes k and k are de� ned as

k = ¯k a3 D(0)
11 , k = ¡ g( m / x 0) ¡ ( m / x 0)

2

g = ḡ / q h x 0 , x 2
0 = D(0)
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where D(0)
11 is the value of D11 when all � bers are aligned with the

x axis.
Equation (12) represents an eigenvalue problem. For zero � ow

velocity, k = 0, the eigenvalues k are real. As the � ow velocity in-
creases from zero, two eigenvalueswill usually approacheach other
and coalesce to k at a value of k = k cr, which is a critical value of
dynamic pressure, and become complex-conjugatepairs for k > k cr.

Results and Discussion
First, a comparison of ef� ciency for the FSM and the FEM7 is

given in Table 1 for � utter analysis of a square isotropic panel with
various cross-�ow angles. All the analyses were performed on a
personal computerwith Pentium II 233 CPU, 96-MBRAM, WIN95
operating system, and MS FORTRAN PowerStation 4.0 compiler.
With the same accuracy, the CPU time required for the FSM was
less than 1

3 of that for the FEM. Then, for the composite laminates,
the panel considered for the analysis was a symmetric angle-ply
laminate with simply supported edges. The material constants were
E1 =26.5E2, G12 = G13 = G23 =1.184E2 , and m 12 =0.21. Three
different meshes (4 £ 4, 4 £ 8, and 8 £ 4) were used in the FSM
to study the effects of the strip number (n) and series term (m)
on accuracy of the solutions for the composite laminates. Results
obtained for the plateswere comparedwith resultsobtainedwith the
FEM.7 Figure 2 shows the effect of � ber orientation on the � utter

Table 1 Flutter boundaries for a square
isotropic plate by the FSM

K = 0 deg K = 45 deg K = 90 degMesh
n £ m CPU, s k cr CPU, s k cr CPU, s k cr

4 £ 4 0.44 508.6 0.88 524.4 0.88 505.1
4 £ 6 1.10 508.6 2.64 525.9 2.64 511.9
4 £ 8 2.19 508.6 6.32 526.1 5.93 512.5
6 £ 4 1.15 511.9 2.37 524.5 2.19 505.1
6 £ 6 3.24 511.9 9.11 526.1 8.13 511.9
6 £ 8 6.43 511.9 16.91 526.2 19.06 512.5
8 £ 4 3.24 512.4 6.09 524.5 5.61 505.1
8 £ 6 8.24 512.4 18.07 526.1 18.67 511.9
8 £ 8 18.51 512.4 43.89 526.2 43.72 512.5
FEM (4 £ 4) 10.93 512.2 12.47 525.8 10.93 512.2
FEM (5 £ 5) 43.06 512.5 43.45 526.2 43.06 512.5
Exact —— 512.6 —— —— —— 512.6

Fig. 2 Flutter boundaries for graphite-epoxy plate with a/b = 1.0.

Fig. 3 Flutter boundaries for graphite-epoxy plate with a/b = 2.0.

boundariesfor a square panel with three different cross-� ow angles
( K =0, 45,90 deg) and two differentlayernumbers(N =2, 10). For
a plate with only two layers, the bending–twisting stiffness terms
not only have a destabilizing (or stabilizing) effect on the � utter
boundary but also affect the accuracy of the FSM results. When
compared with the FEM results, the 4 £ 4 mesh give satisfactory
results for almost all cases except for the laminates with N =2,
K = 90 deg, and a � ber angle between 50 and 70 deg. If the strip
number is increasedfrom4 to 8 (i.e., the 8 £ 4 mesh), the accuracyof
the results is not improved.However, the accuracycan be improved
by increasing the series term. The 4 £ 8 mesh gives good results for
all cases shown in Fig. 2. Figure 3 shows the � utter boundaries as
a function of � ber orientation for a rectangular angle-ply laminated
plate with a length/width ratio of 2.0. For both K =0 and 45 deg
� ow angles, it is seen that the FSMs with 4 £ 4 and 8 £ 4 meshes
give unsatisfactory results for a plate with N = 2 and a � ber angle
between30 and 70 deg. The 4 £ 8 meshgivesonly acceptableresults.
Increasing the series terms will improve the results.
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Conclusions
The application of the � nite strip method to supersonic � utter of

composite laminated panels has been presented. The present for-
mulations are for symmetric laminates but it is easy to extend the
formulations to general laminated plates. Based on the present re-
sults, the following conclusions can be made:

1) For isotropic panels, the number of strips and series terms
that required giving satisfactory results by the � nite strip method is
dependent on the � ow angularity.

2) When � ber orientationis not alignedwith the x- or y-direction,
increasing series terms will rapidly improve the accuracy of the
results.

3) Flutter boundary (k cr) is independentof the series terms when
the air� ow is along the x-direction (K = 0±) and is independent of
the strip numbers when the air� ow is along y-direction (K =90±).
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Introduction

E STIMATION of stability and control derivatives or of nonlin-
ear unsteadyaerodynamiceffects from� ightdata is a subjectof

continuousinterest.The time-domainapproachbased on the output
error method is widely used for this purpose.1 ¡ 3 It leads to a nonlin-
ear optimization problem, which is solved mostly using the uncon-
strained Gauss–Newton method. Parameter estimation subject to
simple bounds can, however, be relevant in some cases. Two typical
applicationsare the following:1) parameters that describe the phys-
ical effects, in the present case aerodynamic effects, are often con-
strained to lie in a certain range, for example, the Oswald’s factor4

characterizing the increase in drag over ideal condition caused by
nonelliptical lift distribution and interference is typically limited to
less than one or the time delay is always positive and hence greater
than zero; and 2) estimation of highly nonlinear model parameters
such as friction, which may lead to numerical dif� culties caused
by different reasons like poor guess of initial values.5 Incorporation
of such lower and upper bounds in aircraft parameter estimation
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using the Gauss–Newton method has not been hitherto reported in
the literature. This Note, therefore, addresses the issues pertain-
ing to extending the Gauss–Newton method to account for simple
bounds and also demonstrates that the active-set strategy provides
an ef� cient solution retaining the desirablepropertiesof the Gauss–

Newton method, namely, quadratic convergence and availability of
statistical information regarding the accuracy of the estimates.

Problem Formulation
In the general case a dynamic system is represented as

Çx(t) = f [x(t ), u(t ), k ] x(t0) = x0 (1)

y(t ) = g[x(t), u(t ), k ] (2)

z(tk ) = y(tk ) + v(tk ) k = 1, 2, 3, . . . , N (3)

where x is the n-dimensional state vector, y the m-dimensional ob-
servation vector, and u the p-dimensional control input vector. The
system functions f and g are general nonlinear real valued vector
functions. The measurement vector z is sampled at N discrete time
points tk , and the noise vectorv is assumed to be a sequenceof inde-
pendent Gaussian random variables with zero mean and covariance
matrix R. It is required to estimate the unknown system parameters
k and the initial conditions x0 as well as the measurement noise
covariance matrix R.

Unconstrained Gauss–Newton Method
The maximum likelihood estimates of the unknown parameters

and of the unknown noise covariance matrix are obtained by mini-
mizing the cost function3,6:

J ( H , R) =
1

2

N

k = 1

[z(tk ) ¡ y(tk)]T R ¡ 1[z(tk ) ¡ y(tk)]T +
N

2
j R j

(4)

where H =[ k T , xT
0 ]T denotes the q-dimensionalvectorof unknown

parameters,whichmay beextendedto includebiaserrors in themea-
surements of responseand control input variables.6 Optimizationof
Eq. (4) is carried out in two steps. In the � rst step it can be shown
that for any given value of H the maximum likelihood estimate of
R is given by

R̂ =
1
N

N

k = 1

[z(tk) ¡ y(tk )][z(tk ) ¡ y(tk)]T (5)

Having obtained an estimate of R, any optimization method can
be applied to update the parameter vector H . The investigations
in the past have, however, demonstrated that the derivative-free
search methods such as Powell and downhill Simplex methods7

or Extrem8 and routinely available gradient-basedmethods such as
quasi-Newton, conjugate-gradient,or Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithms7 are much slower compared to the
Gauss–Newton method, particularly for estimation involving large
dynamicsystemswhere the computationaleffort to compute the sys-
tem responses and their gradients is high.9,10 For aircraft parameter
estimation purposes the Gauss–Newton method is therefore widely
used.1 ¡ 3 The unconstrainedGauss–Newton method yields the iter-
ative parameter update:

H i + 1 = H i + D H with D H = ¡ F ¡ 1G (6)

where the q £ q dimensional information matrix F and the
q-dimensional gradient vector G are given by
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