

$$[A_{sf}] = \iint [S]^T \left[\frac{\partial S}{\partial x} \right] \cos \Lambda \, dx \, dy + \iint [S]^T \left[\frac{\partial S}{\partial y} \right] \sin \Lambda \, dx \, dy \quad (10)$$

where the matrix

$$[G]^T = \left[\begin{array}{ccc} \frac{\partial^2 S}{\partial x^2} & \frac{\partial^2 S}{\partial y^2} & 2 \frac{\partial^2 S}{\partial x \partial y} \end{array} \right]$$

is the strain-displacement relation matrix. Each strip has 4 degrees of freedom; hence the size of the above matrices will be $4m \times 4m$.

By assembling the strips for the entire plate system and applying the kinematic boundary conditions, we find that the equation of motion becomes

$$[M]\{\ddot{q}\} + \bar{g}[A_d]\{\dot{q}\} + \bar{\lambda}[A_f]\{q\} + [K]\{q\} = \{0\} \quad (11)$$

where $\bar{\lambda}$ is the aerodynamic pressure parameter and \bar{g} is the aerodynamic damping parameter.

Assuming that the plate motion is an exponential function of time, i.e., $\{q\} = \{q\} e^{vt}$, where v is the complex frequency of oscillation and introducing some nondimensional variables, we then find that the equation of motion becomes

$$[K] + \bar{\lambda}[A_f] - k[M]\{q\} = \{0\} \quad (12)$$

The nondimensional parameters λ and k are defined as

$$\begin{aligned} \lambda &= \bar{\lambda}a^3 / D_{11}^{(0)}, & k &= -g(v/\omega_0) - (v/\omega_0)^2 \\ g &= \bar{g}/\rho h \omega_0, & \omega_0^2 &= D_{11}^{(0)} / \rho h a^4 \end{aligned}$$

where $D_{11}^{(0)}$ is the value of D_{11} when all fibers are aligned with the x axis.

Equation (12) represents an eigenvalue problem. For zero flow velocity, $\lambda=0$, the eigenvalues k are real. As the flow velocity increases from zero, two eigenvalues will usually approach each other and coalesce to k at a value of $\lambda=\lambda_{cr}$, which is a critical value of dynamic pressure, and become complex-conjugate pairs for $\lambda > \lambda_{cr}$.

Results and Discussion

First, a comparison of efficiency for the FSM and the FEM⁷ is given in Table 1 for flutter analysis of a square isotropic panel with various cross-flow angles. All the analyses were performed on a personal computer with Pentium II 233 CPU, 96-MB RAM, WIN95 operating system, and MS FORTRAN PowerStation 4.0 compiler. With the same accuracy, the CPU time required for the FSM was less than $\frac{1}{3}$ of that for the FEM. Then, for the composite laminates, the panel considered for the analysis was a symmetric angle-ply laminate with simply supported edges. The material constants were $E_1 = 26.5E_2$, $G_{12} = G_{13} = G_{23} = 1.184E_2$, and $\nu_{12} = 0.21$. Three different meshes (4×4 , 4×8 , and 8×4) were used in the FSM to study the effects of the strip number (n) and series term (m) on accuracy of the solutions for the composite laminates. Results obtained for the plates were compared with results obtained with the FEM.⁷ Figure 2 shows the effect of fiber orientation on the flutter

Table 1 Flutter boundaries for a square isotropic plate by the FSM

Mesh $n \times m$	$\Lambda = 0$ deg		$\Lambda = 45$ deg		$\Lambda = 90$ deg	
	CPU, s	λ_{cr}	CPU, s	λ_{cr}	CPU, s	λ_{cr}
4×4	0.44	508.6	0.88	524.4	0.88	505.1
4×6	1.10	508.6	2.64	525.9	2.64	511.9
4×8	2.19	508.6	6.32	526.1	5.93	512.5
6×4	1.15	511.9	2.37	524.5	2.19	505.1
6×6	3.24	511.9	9.11	526.1	8.13	511.9
6×8	6.43	511.9	16.91	526.2	19.06	512.5
8×4	3.24	512.4	6.09	524.5	5.61	505.1
8×6	8.24	512.4	18.07	526.1	18.67	511.9
8×8	18.51	512.4	43.89	526.2	43.72	512.5
FEM (4×4)	10.93	512.2	12.47	525.8	10.93	512.2
FEM (5×5)	43.06	512.5	43.45	526.2	43.06	512.5
Exact	—	512.6	—	—	—	512.6

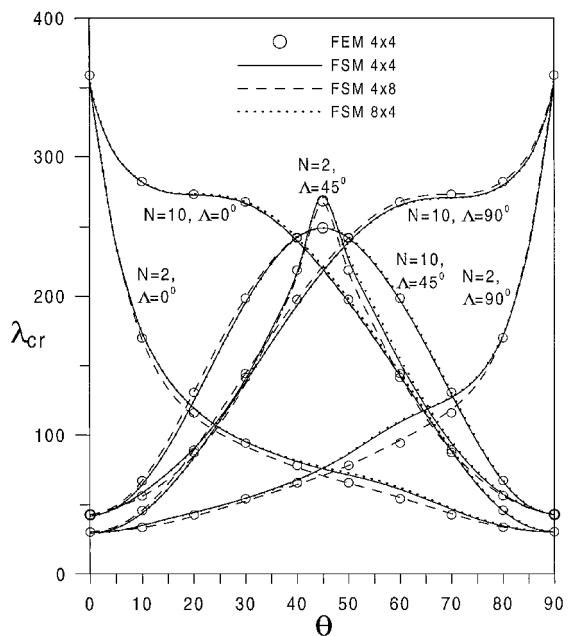


Fig. 2 Flutter boundaries for graphite-epoxy plate with $a/b = 1.0$.

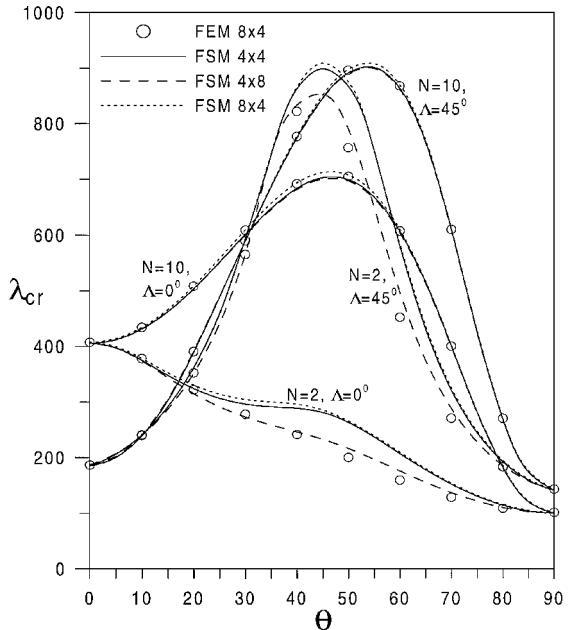


Fig. 3 Flutter boundaries for graphite-epoxy plate with $a/b = 2.0$.

boundaries for a square panel with three different cross-flow angles ($\Lambda = 0, 45, 90$ deg) and two different layer numbers ($N = 2, 10$). For a plate with only two layers, the bending-twisting stiffness terms not only have a destabilizing (or stabilizing) effect on the flutter boundary but also affect the accuracy of the FSM results. When compared with the FEM results, the 4×4 mesh give satisfactory results for almost all cases except for the laminates with $N = 2$, $\Lambda = 90$ deg, and a fiber angle between 50 and 70 deg. If the strip number is increased from 4 to 8 (i.e., the 8×4 mesh), the accuracy of the results is not improved. However, the accuracy can be improved by increasing the series term. The 4×8 mesh gives good results for all cases shown in Fig. 2. Figure 3 shows the flutter boundaries as a function of fiber orientation for a rectangular angle-ply laminated plate with a length/width ratio of 2.0. For both $\Lambda = 0$ and 45 deg flow angles, it is seen that the FSMs with 4×4 and 8×4 meshes give unsatisfactory results for a plate with $N = 2$ and a fiber angle between 30 and 70 deg. The 4×8 mesh gives only acceptable results. Increasing the series terms will improve the results.

Conclusions

The application of the finite strip method to supersonic flutter of composite laminated panels has been presented. The present formulations are for symmetric laminates but it is easy to extend the formulations to general laminated plates. Based on the present results, the following conclusions can be made:

1) For isotropic panels, the number of strips and series terms that required giving satisfactory results by the finite strip method is dependent on the flow angularity.

2) When fiber orientation is not aligned with the x - or y -direction, increasing series terms will rapidly improve the accuracy of the results.

3) Flutter boundary (λ_{cr}) is independent of the series terms when the airflow is along the x -direction ($\Lambda = 0^\circ$) and is independent of the strip numbers when the airflow is along y -direction ($\Lambda = 90^\circ$).

References

¹Ventres, C. S., and Dowell, E. H., "Comparison of Theory and Experiment for Nonlinear Fluttering of Loaded Plates," *AIAA Journal*, Vol. 8, No. 11, 1970, pp. 2022-2030.

²Shiau, L. C., "Flutter of Composite Laminated Beam Plates with Delamination," *AIAA Journal*, Vol. 30, No. 10, 1992, pp. 2504-2511.

³Olson, M. D., "Finite Element Applied to Panel Flutter," *AIAA Journal*, Vol. 5, No. 2, 1967, pp. 2267-2270.

⁴Yang, T. Y., "Flutter of Flat Finite Element Panels in a Supersonic Potential Flow," *AIAA Journal*, Vol. 13, No. 11, 1975, pp. 1502-1507.

⁵Shiau, L. C., and Chang, J. T., "Transverse Shear Effect on Flutter of Composite Panels," *Journal of Aerospace Engineering*, Vol. 5, No. 4, 1990, pp. 465-479.

⁶Cheung, Y. K., *Finite Strip Method in Structural Analysis*, Pergamon, New York, 1976, pp. 27-34.

⁷Wu, T. Y., "Geometrically Nonlinear Analysis of Laminated Plates by Finite Element Method," Ph.D. Dissertation, Inst. of Aeronautics and Astronautics, National Cheng-Kung Univ., Taiwan, 1995.

using the Gauss-Newton method has not been hitherto reported in the literature. This Note, therefore, addresses the issues pertaining to extending the Gauss-Newton method to account for simple bounds and also demonstrates that the active-set strategy provides an efficient solution retaining the desirable properties of the Gauss-Newton method, namely, quadratic convergence and availability of statistical information regarding the accuracy of the estimates.

Problem Formulation

In the general case a dynamic system is represented as

$$\dot{x}(t) = f[x(t), u(t), \lambda] \quad x(t_0) = x_0 \quad (1)$$

$$y(t) = g[x(t), u(t), \lambda] \quad (2)$$

$$z(t_k) = y(t_k) + v(t_k) \quad k = 1, 2, 3, \dots, N \quad (3)$$

where x is the n -dimensional state vector, y the m -dimensional observation vector, and u the p -dimensional control input vector. The system functions f and g are general nonlinear real valued vector functions. The measurement vector z is sampled at N discrete time points t_k , and the noise vector v is assumed to be a sequence of independent Gaussian random variables with zero mean and covariance matrix R . It is required to estimate the unknown system parameters λ and the initial conditions x_0 as well as the measurement noise covariance matrix R .

Unconstrained Gauss-Newton Method

The maximum likelihood estimates of the unknown parameters and of the unknown noise covariance matrix are obtained by minimizing the cost function^{3,6}:

$$J(\Theta, R) = \frac{1}{2} \sum_{k=1}^N [z(t_k) - y(t_k)]^T R^{-1} [z(t_k) - y(t_k)]^T + \frac{N}{2} \ln|R| \quad (4)$$

where $\Theta = [\lambda^T, x_0^T]^T$ denotes the q -dimensional vector of unknown parameters, which may be extended to include bias errors in the measurements of response and control input variables.⁶ Optimization of Eq. (4) is carried out in two steps. In the first step it can be shown that for any given value of Θ the maximum likelihood estimate of R is given by

$$\hat{R} = \frac{1}{N} \sum_{k=1}^N [z(t_k) - y(t_k)][z(t_k) - y(t_k)]^T \quad (5)$$

Having obtained an estimate of R , any optimization method can be applied to update the parameter vector Θ . The investigations in the past have, however, demonstrated that the derivative-free search methods such as Powell and downhill Simplex methods⁷ or Extrem⁸ and routinely available gradient-based methods such as quasi-Newton, conjugate-gradient, or Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithms⁷ are much slower compared to the Gauss-Newton method, particularly for estimation involving large dynamic systems where the computational effort to compute the system responses and their gradients is high.^{9,10} For aircraft parameter estimation purposes the Gauss-Newton method is therefore widely used.¹⁻³ The unconstrained Gauss-Newton method yields the iterative parameter update:

$$\Theta_{i+1} = \Theta_i + \Delta\Theta \quad \text{with} \quad \Delta\Theta = -F^{-1}G \quad (6)$$

where the $q \times q$ dimensional information matrix F and the q -dimensional gradient vector G are given by

$$F = \frac{\partial^2 J}{\partial \Theta^2} \approx \sum_{k=1}^N \left[\frac{\partial y(t_k)}{\partial \Theta} \right]^T R^{-1} \left[\frac{\partial y(t_k)}{\partial \Theta} \right] \quad (7)$$

$$G = \frac{\partial J}{\partial \Theta} = \sum_{k=1}^N \left[\frac{\partial y(t_k)}{\partial \Theta} \right]^T R^{-1} [z(t_k) - y(t_k)] \quad (8)$$

ESTIMATION of stability and control derivatives or of nonlinear unsteady aerodynamic effects from flight data is a subject of continuous interest. The time-domain approach based on the output error method is widely used for this purpose.¹⁻³ It leads to a nonlinear optimization problem, which is solved mostly using the unconstrained Gauss-Newton method. Parameter estimation subject to simple bounds can, however, be relevant in some cases. Two typical applications are the following: 1) parameters that describe the physical effects, in the present case aerodynamic effects, are often constrained to lie in a certain range, for example, the Oswald's factor⁴ characterizing the increase in drag over ideal condition caused by nonelliptical lift distribution and interference is typically limited to less than one or the time delay is always positive and hence greater than zero; and 2) estimation of highly nonlinear model parameters such as friction, which may lead to numerical difficulties caused by different reasons like poor guess of initial values.⁵ Incorporation of such lower and upper bounds in aircraft parameter estimation

Received 20 November 1999; revision received 5 January 2000; accepted for publication 24 January 2000. Copyright © 2000 by R. V. Jategaonkar. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

*Senior Scientist, Institute of Flight Research, Lilienthalplatz 7. Senior Member AIAA.